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We present simulation results of flow-induced vibrations of an infinitely long flexible
cable at Reynolds numbers Re = 100 and Re = 200, corresponding to laminar and
early transitional flow states, respectively. The question as to what cable motions and
flow patterns prevail is investigated in detail. Both standing wave and travelling wave
responses are realized but in general the travelling wave is the preferred response.
A standing wave cable response produces an interwoven pattern of vorticity, while a
travelling wave cable response produces oblique vortex shedding. A sheared inflow
produces a mixed standing wave/travelling wave cable response and chevron-like
patterns with vortex dislocations in the wake. The lift force on the cable as well as its
motion amplitudes are larger for the standing wave response. At Re = 200, the cable
and wake response are no longer periodic, and the maximum amplitude of the cable
is about one cylinder diameter, in agreement with experimental results.

1. Introduction
One of the major reasons for failure of cables in the ocean is flow-induced vibrations,

commonly known as strumming, e.g. see Griffin et al. (1982). The design of mooring
cables, petroleum production risers, pipelines, and remotely operated vehicle tethers
depend critically on the magnitude and frequency of these vibrations. In air flow,
similar cylindrical structures are also subject to excitation due to vortex shedding. The
failure of the Tacoma Narrows suspension bridge in 1940 is a well-known example
of the destructive potential of flow-induced vibrations.

Vortex-induced vibration of a cable is a fluid-elastic problem. The vibration of
the cable is driven by the force fluctuations due to vortex shedding, and the vortex
shedding is influenced by the motion of the cable (see Blevins 1977; Naudascher
& Rockwell 1993). Although separate progress has been made in the modelling of
wake flows and predicting cable dynamics (see the reviews by Triantafyllou, Gopal-
krishnan & Grosenbaugh 1994; Sarpkaya 1979; Bearman 1984 and Parkinson 1989),
understanding the coupling of cable and wake dynamics remains unresolved. The
fundamental assumption in modelling flow structure interactions is the separation
of hydrodynamic loading into vortex flow forces and potential flow forces as first
suggested by Taylor (1928) and revisited by Lighthill (1986). However, this classical
approach needs to be reconsidered in order to explain the full fluid/structure in-
teraction. The recent progress made in understanding and modelling the near-wake

† Author to whom correspondence should be addressed.
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dynamics of bluff bodies offers an opportunity to revisit the vortex-induced vibration
problem and provide new predictive models that give an accurate description of the
flow field.

Experimental studies of vortex-induced vibrations of flexibly mounted rigid cylin-
ders have established two basic facts (see Griffin, Skop & Koopman 1973; Griffin &
Koopmann 1977; Staubli 1983; Griffin 1992). First, vortex-induced vibration is a self-
limiting process, with an upper bound for the vibration amplitude of approximately
one cylinder diameter. Second, the magnitude of the lift force weakly depends on
the vibration amplitude. However, the phase of the lift force relative to the cylinder
motion strongly depends on the vibration amplitude and is the dominant mechanism
that limits the vibration amplitude.

For flexible cylinders, or vibrating cables, we have the additional complexity of
variation of wake properties such as Strouhal number, vortex spacing, and formation
length, along the span of the cable (see Ramberg & Griffin 1976). The phase difference
between the lift force and cable motion varies along the cable span, and depends
on the mass ratio, shear ratio, and Reynolds number. For a standing wave vibration
response this phase difference is typically greater at the nodes than at the anti-nodes.
For longer wavelength cable vibration where a travelling wave vibration response
prevails, the phase difference is constant along the cable span. Therefore, the key
issue in hydroelastic problems is predicting the variation of the amplitude and phase
of the hydrodynamic forces along a vibrating cable as a function of the motion of the
cable. If the hydrodynamic forces are modelled correctly, the existing state-of-the-art
cable dynamics computer programs (see Triantafyllou 1994 and Hover, Grosenbaugh
& Triantafyllou 1994) can simulate the response of the cable with acceptable accuracy.

Non-dimensional parameters that influence the motion of flexible cables have
been analysed by Vandiver (1991) using data from 20 years of field experiments.
It was concluded that the parameters which significantly affect the cable response
are: the number of resonant natural modes within the shear excitation bandwidth,
shear fraction, reduced damping, mass ratio, and turbulence intensity. Predicting the
cable response is complicated – in particular the conditions under which ‘lock-in’
occurs, where the cable vibration locks in to a single frequency and wavelength. The
conditions that lead to a multi-modal response are even less well understood and the
question of whether lock-in is possible for very long cables has not yet been answered.
It is not known if high vibration modes can lock-in, although this has occasionally
been observed in field experiments.

At lock-in, the response of marine cables and other marine structures seems to
follow a universal curve indicated by the data in figure 1 which includes experimental
data from several investigations, compiled by Griffin (1992). The figure plots crossflow
vibration amplitude versus the so-called mass-damping or response parameter SG. The
latter is a dimensionless group which is derived based on a normal mode analysis of
the equation of motion at lock-in. It is defined as

SG = 8π2St2ζs
ρ

ρfd2
, (1.1)

where St = fd/U is the Strouhal number (with f the shedding frequency, d the cable
diameter, and U the free-stream velocity). Also, ζs denotes damping due to structural
dissipation, and the last term is the mass ratio where ρ is the mass per unit length
of the cable and ρf is the fluid density. Marine cables typically have a mass-damping
(response) parameter less than 1, and the mass ratio in water varies from slightly
above 1 to 10. In addition to cables, the data in figure 1 include cantilevers, spring-
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Figure 1. Flow-induced crossflow vibration amplitude versus mass-damping (response) parameter.
The curve shows our Re = 100 two-dimensional simulation results, while the symbols show
experimental data compiled by Griffin (1992).

mounted cylinders and pivoted cylinders. A correction factor based on a normal mode
analysis has been used to correct for differences in the mode shapes.

The figure also shows our Re = 100 two-dimensional simulation results of a freely
vibrating rigid cylinder for two different mass ratios, first reported in Newman &
Karniadakis (1995). The simulation results show the amplitude limiting response as
the mass-damping (response) parameter tends to zero, and the attenuation of the
vibration amplitude as the mass-damping increases. The simulations underpredict
the cylinder vibration amplitude for low values of mass-damping and overpredict
the cylinder vibration amplitude for high values of mass-damping. This discrepancy
may be explained by the fact that three-dimensionality plays a dominant role in
addition to the particular form of cable lock-in motion. The simulations also reveal
a monotonic trend with respect to the mass ratio, with lower mass ratio giving a
larger amplitude response. This has also been found in experiments and has led to
the conclusion that low-mass-ratio cylinders have broader lock-in bandwidth than
high-mass-ratio cylinders. The justification for coalescence of mass ratio and damping
ratios into a single parameter, i.e. the mass-damping or response parameter, is based
on the assumption of simple harmonic motion. At lower values of the mass ratio
ρ/ρfd

2, higher harmonics are introduced and therefore it is less valid to assume that
the vibration amplitude depends on just one single combined parameter. Moreover,
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within the lock-in regime there is some variation in the response amplitude as
discussed in §3. An additional explanation for the discrepancy is Reynolds number
effects, since the experiments correspond to a range 300 < Re < 106 while the
simulation results in figure 1 are for Re = 100. Two-dimensional simulations at
Re = 200 by Blackburn & Karniadakis (1993) have produced similar trends to our
Re = 100 simulations.

Current models of cable motion couple the displacement equation with the flow
using the cross-sectional force coefficient. This force coefficient is modelled either using
a series of approximations fitted with experimental data or by using a nonlinear van
der Pol type equation, as in the work of Hartlen & Curie (1970). Parkinson (1989)
remarks that there is skepticism about these models, particularly in the light of their
failure to even qualitatively predict experimentally observed responses, for example
the oscillation hysteresis reported by Brika & Laneville (1993). Simplified models
developed by Vandiver & Chung (1987) ignore the details of the flow and their
success is based on accurately modelling the added mass coefficient. This added-mass
coefficient significantly varies along the cable, and it may even obtain negative values
for low-mass-ratio cables, as reported by Chung (1989) and Sarpkaya (1977).

The objective of the present study is to directly simulate the flow past a freely
vibrating flexible cable from first principles, i.e. using the full Navier–Stokes equations
coupled with the equation of motion for the cable. In this paper, we consider
inextensible cables with negligible bending stiffness and negligible internal damping.
We simulate flow fields in the laminar (Re = 100) and early transitional (Re = 200)
regimes. We also neglect the effect of different types of cable support by assuming an
infinitely long cable and periodicity in the spanwise direction. We specifically focus
on the flow patterns and corresponding hydrodynamic loading produced by a cable
undergoing a standing wave or a travelling wave flow-induced vibration motion.
Several simulations are presented to determine the preferred asymptotic response
mode corresponding to different initial states. In nearly all of the simulations the
incoming flow is uniform, but in one case we examine the effects of a sheared inflow
in which a non-lock-in response is produced.

The paper is organized as follows. In §2 the formulation and numerical method
are explained. In §3, the nonlinear response of the coupled system is analysed using
two-dimensional simulations. In §4 we consider standing and travelling wave vibration
responses at Re = 100, and in §5 we investigate the effects of sheared inflow. Section
6 covers transitional wakes at Re = 200, and finally the results are summarized and
discussed in §7.

2. Formulation
2.1. Coordinate transformation

We consider the interaction of an incompressible fluid flowing past a long flexible cable
under tension. The equations that describe this problem are the coupled system of
fluid equations and cable equations. The Navier–Stokes equations and the continuity
equation are the equations of motion of the fluid. In an inertial coordinate system
(x′, y′, z′) these are

∂u′

∂t
+ (u′ · ∇′) u′ = − 1

ρf
∇′p′ + 1

Re
∇′2u′, (2.1)

∇′ · u′ = 0, (2.2)
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Figure 2. Schematic of cable and fluid showing motion and force variables and parameters.

where u′ is the velocity field, p′ is the pressure, Re = Ud/ν is the Reynolds number
based on the free-stream velocity U, cable diameter d and kinematic viscosity ν, ρf
is the fluid density, and ∇′ is the gradient operator in the inertial coordinate system.
By assuming small displacements, the equation of motion of the cable for its two
directions of motion is given by the forced vibrating string equation with damping

ρ
∂2ζ

∂t2
+ b

∂ζ

∂t
= T

∂2ζ

∂z2
+ F (z, t), (2.3)

where ζ(z, t) = (ζ(z, t), η(z, t)) gives the cable displacement in the streamwise and
crossflow directions. The cable has mass per unit length ρ, tension T and damping
coefficient b, while F (z, t) is the force on the cable imparted by the fluid. The
phase speed of waves in the cable is c = (T/ρ)1/2. The force components in the
streamwise and crossflow directions are referred to as the drag and lift forces on
the cable. We assume that the cable is inextensible and its bending stiffness EI
is negligible. Vandiver & Li (1994) suggested that the latter assumption is valid in
tension-dominated cases for which T/EIm2 > 30, where m is the wavenumber of
the excited mode. In all our cable simulations we assume zero damping (b = 0)
since this will produce the maximum vibration amplitude (see figure 1). While our
focus is on solving the flow-induced vibration problem with the simplest possible
cable model, we point out that more complete models of cable dynamics have
been derived by Carrier (1945), Irvine & Caughey (1974), Triantafyllou (1985), and
Triantafyllou & Howell (1992).

Lift and drag forces are computed along the span of the cable by computing the
integral of the pressure and viscous stress terms

F (z, t) =

∮ (
−pn+ ν(∇u+ ∇uT ) · n

)
ds, (2.4)

where the integration is performed around the circumference of the cable at each
spanwise location and n is the outward unit normal on the cable. A schematic of the
fluid/cable system showing the variables and parameters is shown in figure 2.

Solving fluid/structure interaction problems generally involves moving computa-
tional domains and dynamic re-meshing. A general method to deal with this moving
mesh is by using the Arbitrary Lagrangian Eulerian (ALE) formulation in conjunction
with the new spectral discretizations on unstructured grids, Warburton & Karniadakis
(1996). However, in our moving cable problem, we can eliminate the difficulty of a
moving mesh by attaching the coordinate axes to the cable, i.e. using body-fitted
coordinates. This transformation was used by Dimas & Triantafyllou (1994) in stud-
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Figure 3. The computational domain is mapped from an inertial coordinate system (x′, y′, z′) where
the domain boundaries are deformed and moving to a non-inertial coordinate system (x, y, z) where
the domain boundaries are non-deformed and stationary.

ies of inviscid free-surface flows. The transformation maps the time-dependent and
deforming domain to a stationary and non-deforming one as shown in figure 3. This
mapping is described by the following transformation:

x = x′ − ζ(z, t), y = y′ − η(z, t). (2.5a, b)

Accordingly, the velocity components and pressure are transformed as follows:

u = u′ − ∂ζ

∂t
− w′ ∂ζ

∂z
, v = v′ − ∂η

∂t
− w′ ∂η

∂z
, (2.6a,b)

w = w′, p = p′. (2.6c,d)

In the transformed system of coordinates the cable appears as straight and station-
ary. The Navier–Stokes equation (2.1) and continuity equation (2.2) are transformed
as follows:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ A(u, p, ζ), (2.7)

∇ · u = 0, (2.8)

where we have redefined the pressure as p = p′/ρf . The forcing term A(u, p, ζ) is the
additional acceleration introduced by the non-inertial transformation (2.1). The x-, y-
and z-components of A have components due to inviscid and viscous contributions
and are given by

Ax = −d2ζ

dt2
+

1

Re

[
∂2

∂z′2

(
u+

∂ζ

∂z
w

)
− ∂2u

∂z2
+
∂ζ

∂z
∇2
xyw +

∂3ζ

∂t∂z2

]
, (2.9a)

Ay = −d
2η

dt2
+

1

Re

[
∂2

∂z′2

(
v +

∂η

∂z
w

)
− ∂2v

∂z2
+
∂η

∂z
∇2
xyw +

∂3η

∂t∂z2

]
, (2.9b)

Az =
∂ζ

∂z

∂p

∂x
+
∂η

∂z

∂p

∂y
+

1

Re

[
∂2w

∂z′2
− ∂2w

∂z2

]
, (2.9c)

where we define

d

dt
≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
, (2.10a)

∂

∂z′
≡ ∂

∂z
− ∂ζ

∂z

∂

∂x
− ∂η

∂z

∂

∂y
, (2.10b)
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∇2
xy ≡

∂2

∂x2
+

∂2

∂y2
. (2.10c)

We solve the coupled fluid/cable problem in three steps. First, the fluid equations
(2.7) are solved given the cable motion ζ(z, t). Next, the lift and drag forces on the
cable are computed as a function of z using (2.4). Finally, the cable motion is updated
using (2.3).

2.2. Numerical method

The flow and cable variables are assumed to be periodic in the spanwise direction
with a periodic length L. This assumption allows us to use a Fourier expansion in the
z-direction. The flow and cable motion variables are expanded as

u (x, y, z, t)
v (x, y, z, t)
w (x, y, z, t)
p (x, y, z, t)

 =

M−1∑
m=0


um (x, y, t)
vm (x, y, t)
wm (x, y, t)
pm (x, y, t)

 eiβmz, (2.11)

{
ζ (z, t)
η (z, t)

}
=

M−1∑
m=0

{
ζm (t)
ηm (t)

}
eiβmz, (2.12)

where β = 2π/L is the spanwise wavenumber and M is the number of Fourier modes
used in the expansion. The modified Navier–Stokes equations (2.7) and continuity
equation (2.8) in the boundary-fitted coordinate system become a system of M two-
dimensional partial differential equations coupled by the nonlinear terms

∂um

∂t
+ [(u · ∇)u]m = −∇̃pm +

1

Re

[
∇2
xy − β2m2

]
um + [A]m, (2.13)

∇̃ · um = 0 (2.14)

where ∇̃ ≡ (∂/∂x, ∂/∂y, iβm). Similarly, the cable equations become a set of M
uncoupled ordinary differential equations for each mode m

ρ ζ̈m + b ζ̇m + β2m2T ζm = F m(t). (2.15)

The equations of motion for the fluid are discretized in time using the high-order
fractional-step scheme proposed by Karniadakis, Israeli & Orszag (1991). The first
stage of each time step adds all the nonlinear contributions to the velocity field. The
nonlinear terms (u · ∇)u and A(u, p, ζ) are computed explicitly using a stiffly stable
integration scheme of order J

ûm −
J−1∑
q=0

αqu
n−q
m

∆t
=

J−1∑
q=0

βq [−(u · ∇)u+ A]n−qm , (2.16)

where αq and βq are the coefficients for stiffly stable integration. We use second-order-
accurate time stepping (J = 2). The next stage adds the contribution of the pressure
gradient to the velocity field and enforces the continuity constraint,

ˆ̂um − ûm
∆t

= −∇̃pm, ∇̃ · ˆ̂um = 0, (2.17)

along with a consistent Neumann boundary condition for the pressure derived from
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Figure 4. A view of some solution planes and part of the spectral element mesh used in the
computations. The mesh extends 12.5 diameters upstream, 12.5 diameters above and below the
cable, and 30 diameters downstream.

the normal component of the momentum equation. In the final stage, the viscous
correction is computed and the updated velocity boundary conditions are applied:

γ0u
n+1
m − ˆ̂um
∆t

=
1

Re

[
∇2
xy − β2m2

]
un+1
m , (2.18)

where γ0 is the backwards differentiation coefficient in the stiffly stable scheme.
The modified flow equations (2.7) are solved using the Navier–Stokes code Prism

developed by Henderson & Karniadakis (1995), which uses a mixed spectral element–
Fourier discretization in the Eulerian reference frame. A similar code but without the
transformation was used to investigate transition in the wake of the stationary cylinder
by Karniadakis & Triantafyllou (1992). The discretization in the (x, y)-plane employs
quadrilateral spectral elements, which are high-order finite elements with Legendre
polynomials forming the expansion basis as tensor products in two dimensions. The
mesh is shown in figure 4.

An important feature of the transformation is that it is divergence free, i.e. ∇·ζ = 0.
This greatly reduces the number of extra terms generated by the transformation and
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Case N NZ x̄/d x′/d y′/d C̄d C ′d Cl St
n7nz32 7 32 45.5364 0.0918 0.6683 2.00814 0.1586 0.3554 0.159
n9nz16 9 16 45.9742 0.1025 0.6792 2.02991 0.1682 0.3698 0.159
n9nz32 9 32 45.5213 0.0908 0.6677 2.00748 0.1588 0.3554 0.159
n9nz64 9 64 45.5213 0.0916 0.6677 2.00752 0.1586 0.3554 0.159
n11nz32 11 32 45.5218 0.0912 0.6677 2.00754 0.1588 0.3554 0.159

Table 1. Mesh resolution test: L/d = 12.6, Re = 100, c = 2.1, ωn = 0.105. Base case is n9nz32.
N denotes spectral element polynomial order in the (x, y)-plane, and NZ = 2M is the number of
physical planes in the z-direction. Primes denote amplitudes and overbars denote time-averaged
quantities. The number of spectral elements in the (x, y)-planes is 110.

makes the transformed equations look similar to the original equations, comparing
the Navier–Stokes equations (2.1) to (2.7) and the continuity equation (2.2) to (2.8).
The only additional work in solving for the flow is the computation of the acceleration
terms A(u, p, ζ) which can be lumped with the nonlinear convective terms (u · ∇)u.
The cable equations (2.15) are solved in Fourier space using the Newmark or average
acceleration scheme, which is second-order accurate in time.

To verify the code and measure its accuracy we used two model problems, one
to check temporal accuracy and stability, and the other to check spatial accuracy.
Details of these validation tests are given in Newman (1996).

2.3. Simulation parameters and parallel implementation

The flow problem was computed using second-order-accurate time stepping and
a quadrilateral spectral element–Fourier expansion in the (x, y)- and z-directions,
respectively. Our study focuses on laminar (Re = 100) and transitional (Re = 200)
wakes. We consider several periodic domain lengths (L/d) and initial conditions. In
general, the cable is free to move in the streamwise and crossflow directions; however
we sometimes constrain the cable to only allow motion in the crossflow direction. For
all the cable simulations we ignored structural damping (b = 0).

Resolution tests were performed to check grid independence by varying the res-
olution both in the (x, y)-plane and the z-direction. Table 1 summarizes the results
at Re = 100. We verify that our results are resolution independent at this Reynolds
number. Similarly, selective tests at Re = 200 (reported also by Evangelinos & Kar-
niadakis 1996) have verified the accuracy of the results presented here. However,
the values of the measurements listed in the table may somewhat be affected by the
blockage due to the relatively small size of the computational domain. This effect
was found previously in simulations reported in Karniadakis & Triantafyllou (1992).
Simulations in significantly larger domains would require excessive computational
resources and produce little qualitative difference to the results.

The parallel implementation and benchmark results of the spectral element–Fourier
code is described in Crawford et al. (1996). Because the linear contributions in
the Navier–Stokes equations are decoupled in Fourier space, we assign each group
of Fourier modes to a separate processor. The coupling, which comes from the
advection and interaction terms, requires a global transpose of the data and multiple
one-dimensional FFTs. Benchmarking of the parallel code Prism on a variety of
computer platforms has shown that the IBM-SP2 is currently the most efficient and
scalable computer for our code. The majority of our simulations were performed
on our 24-node IBM-SP2 at the Center for Fluid Mechanics at Brown University
and the IBM-SP2 at the Cornell Theory Center. Earlier simulations were performed
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on the Intel-Paragons at the San Diego Supercomputing Center and at the Caltech
Concurrent Supercomputing Facility. Typical simulations were run on 32 to 64
processors and took 1.5 s per time step on the IBM-SP2, and 6 s per time step
on the Intel-Paragon. A non-dimensional time step of U∆t/d = 0.002 was used for
most of the simulations, and integration times ranged from Ut/d = 100–1000 (i.e.
50 000–500 000 time steps).

3. Nonlinear flow-induced vibration response
To obtain a significant flow-induced vibration response we need to tune the natural

frequency of one of the cable vibration modes to the frequency of vortex shedding.
We use the fixed-cylinder shedding frequency to estimate this. For the Reynolds
numbers in this study (Re 6 200) the flow past a fixed-cylinder is two-dimensional
(see Karniadakis & Triantafyllou 1992 and Barkley & Henderson 1996) and therefore
this shedding frequency is easily measured from two-dimensional simulations.

In a forced linear spring–mass–damper system, the mass oscillates at the forcing
frequency and the maximum response amplitude occurs when the forcing frequency
is equal to the damped natural frequency. Flow-induced vibrations of a flexibly
mounted cylinder are however highly nonlinear due to the fact that the cylinder
motion affects the frequency and amplitude of the forcing, which in turn affects the
cylinder motion. To quantify this effect we simulated the two-dimensional flow over
an elastically mounted cylinder at Re = 100. At Re = 100, the Strouhal number
of the fixed cylinder is St = 0.167, in agreement with the experimental results of
Hammache & Gharib (1991). The cylinder has mass m, and is elastically mounted
using a spring with stiffness k. The natural frequency ωn = (k/m)1/2 is varied above
and below the fixed-cylinder shedding frequency ω0. The cylinder’s response frequency,
response amplitude, and forces on the cylinder are shown in figures 5(a), 5(b) and
5(c) respectively. All quantities are plotted against the ratio of the natural frequency
to the fixed-cylinder shedding frequency ωn/ω0; here ω0 = 2πf0 = 1.05. The lock-in
regime is easily identified by the region of figure 5(a) where the response frequency
depends linearly on the natural frequency. Outside this region, the cylinder vibration
frequency tends towards the stationary cylinder shedding frequency, ω0. Figure 5(b)
shows that the maximum crossflow vibration amplitude is approximately η/d ≈ 0.6,
which occurs at ωn/ω0 = 1.33, i.e. 33% above the stationary-cylinder shedding
frequency. The maximum streamwise amplitude is ζ/d ≈ 0.05 and occurs at about the
same frequency. Figure 5(c) shows that the largest mean drag coefficient is Cd = 2.3,
60% larger than the stationary-cylinder mean drag coefficient of Cd = 1.4. The
largest lift coefficient is C ′l = 1.8 and occurs at a slightly higher natural frequency of
ωn/ω0 = 1.5. At that natural frequency the lift forces have a comparable magnitude
to the drag forces.

Let us choose three of the flow-induced vibration cases to examine their wake
structures. We select three natural frequencies where we observe a significant cylinder
crossflow amplitude response; otherwise we would just see a wake very similar to
the stationary cylinder-wake. The three cases chosen are spread across the natural
frequency range: ωn/ω0 = 0.75, 1.0 and 1.33. In these three cases, the crossflow ampli-
tude responses were η/d = 0.2, 0.5 and 0.6 respectively. Figure 6 shows instantaneous
vorticity contours for these three natural frequencies. A reasonably regular wake is
observed in all three cases and the increasing frequency of vortex shedding with
increasing ωn is obvious.

One of the most prominent differences in these three wakes is seen in the streamwise
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Figure 5. (a) Cylinder flow-induced vibration frequency, (b) cylinder flow-induced vibration ampli-
tude (η/d: crossflow amplitude; ζ/d: streamwise amplitude), and (c) cylinder lift and drag coefficients
(time-averaged and fluctuations), versus natural frequency normalized with fixed cylinder shedding
frequency. Two-dimensional simulation at Re = 100.

and lateral spacing of the vortices. At ωn/ω0 = 0.75, these spacings are approximately
(7.25d, 1.6d), at ωn/ω0 = 1.0 the spacings are (4.9d, 1.9d), and at ωn/ω0 = 1.33 the
spacings are (3.6d, 2.4d). In the last case, the aspect ratio of the lateral to streamwise
vortex spacing (2.4/3.6 = 0.67) is much larger than the von Kármán limit for linear
stability of an inviscid array of point vortices (approximately 0.28) or finite vortices
(Saffman & Schatzman 1982 reports approximately 0.4). Therefore the primary vortex
street is not stable, and this is evident in the last plot of figure 6, which shows the
initial stage of this breakdown though the computational domain is not long enough
to completely capture this process. A similar result has been observed by Brown,
Karniadakis & Young (1993) in simulations with a backward-facing D-shaped cylin-
der when the vortex spacing aspect ratio exceeds 0.6. Also Ongoren & Rockwell (1988)
have investigated in detail the large-scale structures downstream in a similar range
of excitation frequencies for an oscillating circular cylinder and other cylinders of
various cross-sections.
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Figure 6. Flow-induced vibration simulations at Re = 100: instantaneous vorticity contours for
natural frequency ratios ωn/ω0 = 0.75, 1.0 and 1.33.

4. Standing and travelling wave responses

The simplest periodic solutions to the vibrating string equation are standing waves
and travelling waves. Both a standing wave response, y(z, t) = A cos(ωt) cos(2πz/L),
and a travelling wave response, y(z, t) = A cos(ωt± 2πz/L), satisfy the vibrating
string equation, ytt = c2yzz , when ω = 2πc/L, where c is the phase speed. In practice,
both responses are observed in vibrating cables. Using data from field experiments,
Vandiver (1991) has developed a simple criterion based on the product of the mode
number and the modal damping ratio to determine which response will prevail.

In the simulations we can specify the initial conditions for the cable to be either
a standing wave or travelling wave by specifying the cable’s initial amplitude and
velocity. Assuming that the forcing due to vortex shedding is at a frequency ω,
for synchronization the appropriate cable tension is computed using c = ωL/(2π)
where c = (T/ρ)1/2. We choose ω to be the shedding frequency of a corresponding
two-dimensional flow past a stationary cylinder at the same Reynolds number (i.e.
ω = ω0). We first discuss the Re = 100 results where the flow is laminar and
three-dimensional.
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Figure 7. Cable crossflow displacement (y/d), lift coefficient (Cl) and drag coefficient (Cd) versus
non-dimensional time and spanwise distance along cable for standing wave (a) and travelling wave
(b) flow-induced vibration response, L/d = 12.6, Re = 100. Solid lines represent positive values,
dashed lines represent negative values.

4.1. Constrained cable

Our first flow-induced cable vibration simulations consider the Re = 100 flow-
induced vibration response to an initial standing wave and initial travelling wave
of wavelengths L/d = 6.3, 12.6, 18.8, 25.1 at Re = 100. For these simulations, the
cable is constrained to only allow motion in the crossflow direction. Not only is this
the primary direction of cable vibration, but it is an easier case to initially consider
because the unconstrained cable has a longer time transient for the cable to settle down
to a mean downstream position. Each simulation started with a three-dimensional
Re = 100 wake flow and the cable having the appropriate initial displacement and
velocity for the standing wave or travelling wave. All of these simulations converge
to a time-periodic cable response and flow field within about ten shedding periods.

We first study the response for the L/d = 12.6 wavelength vibration case. In
figure 7, we plot crossflow cable displacement y/d, lift coefficient Cl , and drag
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Case y/d Cl C̄d C ′d St

Fixed - 0.34 1.37 0.01 0.167
2-d Free 0.52 0.20 1.85 0.23 0.160
Standing 0.69 0.50 1.72 0.46 0.153
Travelling 0.50 0.16 1.78 0.28 0.161

Table 2. Results for two-dimensional and standing and travelling wave cases for cable maximum
amplitude (y/d), maximum lift (Cl), mean and fluctuating drag coefficient (C̄d, C

′
d), and vibration

frequency. L/d = 12.6, Re = 100.

coefficient Cd, versus dimensionless time tU/d, and position along cable z/d. We
define the force coefficients in the usual manner. For example, given a lift force Fl ,
we define the lift coefficient as Cl = Fl/

1
2
ρfdLU

2. Note that we use coordinate y
to mean cable displacement η (and similarly for x and ζ). Figure 7 shows the plots
for the L/d = 12.6 standing wave (a) and travelling wave (b) flow-induced vibration
responses for approximately three shedding cycles. The initially specified standing
wave case converges to a state where the cable motion is a sustained standing wave
with crossflow amplitude y/d = 0.69 and frequency f = 0.153. This frequency is
slightly lower than the shedding frequency for the fixed cylinder (f0 = 0.167) in the
two-dimensional simulations; this observation is consistent with the models described
in Sarpkaya (1979). The lift coefficient shows a similar pattern to the cable motion,
with the lift force being almost in phase with the cable motion. Note also that the
lift force at the nodes of the standing wave is always zero due to the antisymmetry
of wake structure, which induces a symmetric distribution of pressure and viscous
stresses on the cable. The drag coefficient is periodic with twice the frequency of the lift
coefficient, because the drag does not differentiate between shedding of opposite-sign
vortices.

The corresponding travelling wave plots on figure 7(b) show that all three variables
are moving with a constant wave speed (in the positive z-direction) equal to the
phase speed c = 2.1. The crossflow displacement has an amplitude y/d = 0.50,
which is significantly smaller than the amplitude observed in the standing wave case.
The frequency of oscillation is f = 0.161, also different from the fixed cylinder and
standing wave cases. More importantly, the magnitude of the lift coefficient in this
travelling wave case is about one third of that measured in the standing wave case.
The mean drag coefficients are approximately the same for the standing wave and
travelling wave vibration cases. Again, the relative phases of the travelling wave cable
motion and the forces are similar to those observed in the standing wave case, with
the motion just slightly lagging the force.

These results are summarized in table 2, listing the two-dimensional cases and
the L/d = 12.6 wavelength vibration cases. We see that the maximum values for
the displacement, lift and drag coefficients are all observed for the standing wave
case. Note that the results for the travelling wave are similar to those for the
two-dimensional free cylinder case. The mean drag coefficients for the standing
and travelling wave flow-induced vibration cases are C̄d = 1.72 and C̄d = 1.78
respectively, approximately 25% larger than the mean drag coefficient for the fixed
cable (C̄d = 1.37).

A comparison of vibration amplitudes and forces as a function of vibration wave-
length (L/d) for standing wave and travelling wave vibration is given in table 3 for
four vibration wavelengths. We see that for both the standing wave and travelling
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Case L/d y/d Cl C̄d C ′d St

Standing wave 6.3 0.65 0.73 1.60 0.30 0.147
12.6 0.69 0.50 1.72 0.46 0.153
18.8 0.68 0.47 1.73 0.51 0.156
25.1 0.68 0.52 1.73 0.52 0.159

Travelling wave 6.3 0.30 0.38 1.55 0.20 0.154
12.6 0.50 0.16 1.78 0.28 0.161
18.8 0.50 0.16 1.83 0.33 0.161
25.1 0.50 0.20 1.82 0.36 0.164

Table 3. Constrained standing and travelling wave amplitude, force coefficients and frequency
results for L/d = 6.3, 12.6, 18.8 and 25.1, at Re = 100.

L/d Angle (deg.)

6.3 42∗
12.6 21
18.8 10
25.1 5

Table 4. Oblique vortex shedding angle versus cable wavelength for travelling wave responses.
Constrained cable at Re = 100. Note: ∗ denotes the case where travelling response wave broke
down to a standing wave response.

wave flow-induced cable responses, the motion and forces are generally insensitive to
spanwise cable vibration wavelengths L/d from 12.6 to 25.1. Slight exceptions to this
insensitivity are larger lift coefficients and maximum drag coefficients for the longest
wavelength. For both the standing wave and travelling wave, we see a significant
difference for the shortest vibration wavelength of L/d = 6.3, probably due to the
particularly large curvature in the cable for this relatively short vibration wavelength.
In every case, except the L/d = 6.3 travelling wave, the resulting motion maintains
its form, i.e. standing waves remain standing waves, and travelling waves remain
travelling waves, and this motion remains periodic in time, over several shedding pe-
riods. The time-asymptotic response, however, may be different. In particular, in the
L/d = 6.3 travelling wave case the cable response eventually changes to a standing
wave cable response. This change in crossflow displacement response is shown in
figure 8, and is due to the angle of oblique vortex shedding being too large. Table 4
lists the angle of oblique vortex shedding for the four vibration wavelengths. We see
that the angle is inversely proportional to the wavelength. For L/d=6.3, the angle
42◦ is too large to be sustained, and the flow-induced travelling wave cable response
breaks down to a standing wave cable response, as seen in figure 8.

At Re = 100, flow over a cylinder is two-dimensional, and we see parallel vortex
shedding. If we take a slice of the flow field perpendicular to the cylinder, we see the
well-known von Kármán vortex street pattern of staggered vortices with alternating
signs. A top view of this wake, looking in the negative y-direction, shows parallel rolls
of vorticity being shed from the cylinder and convecting downstream. Starting with
the familiarity of the wake structure in this simple case, we now plot iso-contours
of spanwise vorticity in the wakes of the flow-induced standing and travelling waves.
Figures 9 and 10 show a top view and perspective view of equal and opposite levels
of spanwise vorticity (ωz = ±0.2) for the standing and travelling wave cable wakes
respectively for the L/d = 12.6 vibration case. The darker shade shows negative
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Figure 8. Contours of cable crossflow displacement showing the breakdown of a travelling wave
response to a standing wave response for L/d = 6.3, Re = 100.

spanwise vorticity and the lighter shade shows positive spanwise vorticity. The flow
is from left to right, and the cable is located at x = 0. We see a remarkably different
structure of the wake flow depending on the cable response. The standing wave cable
response produces an interwoven structure to the spanwise vorticity. In contrast, the
travelling wave cable response produces oblique shedding of spanwise vorticity, i.e.
much like the shedding in the fixed cylinder case, but at an angle to the spanwise
direction. Oblique shedding has been observed in flows over fixed cylinders in many
experimental studies (see for example, Hammache & Gharib 1991 and Eisenlohr &
Eckelmann 1989). The standing wave plots show that the ‘nodes’ (location of zero
cable displacement) of the cable are located at the two ends and middle of the cable
in the figure (z = 0, 6.3 and 12.6, respectively). In the case of the travelling wave, the
nodes move in the negative z-direction at the phase velocity c.

Further differences between the structure of the wakes behind travelling and stand-
ing wave vibrating cables are shown by looking at spanwise velocity. Figures 11(a)
and 11(b) show contours of spanwise velocity in a slice through the flow field at down-
stream distance x/d = 10, for the standing wave and travelling wave, respectively. In
the standing wave case we see that the spanwise velocity is zero at the anti-nodes of
the cable. This means that no fluid crosses the (x, y)-planes through the anti-nodes.
In contrast, for the travelling wave, we see that fluid is moving in both positive and
negative spanwise directions, indicating a greater spanwise mixing of the fluid.

We can obtain further insight into the structure of the wake by looking at slices
of the flow field perpendicular to the cable. For this purpose, we take slices at four
spanwise positions: the cable maximum (anti-node), node, minimum (anti-node) and
subsequent node. Figures 12 and 13 show spanwise vorticity at these slices for the
L/d = 12.6 standing wave and travelling wave vibration cases, respectively. Dotted
contour levels indicate negative values. This view highlights the difference in the
wake structure between the standing and travelling wave wakes. In the standing
wave case, we see a very different pattern of spanwise vorticity in the wake behind
the nodes compared to the wake behind the anti-nodes. It appears that vortices
are shed simultaneously at this location, similar to what is sometimes observed in
experiments with in-line oscillations, as reported by Sarpkaya (1979). Behind the anti-
nodes we see a relative large lateral spacing of vortices. The shedding patterns between
successive anti-nodes are antisymmetric with respect to one another, consistent with
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Figure 9. Top and perspective views of spanwise vorticity for the standing wave cable response. The
two shades denote equal and opposite magnitude of spanwise velocity, contour levels ωz = ±0.2,
Re = 100.

the interwoven picture of the perspective view; in contrast, the patterns behind the
two nodes are identical.

In the travelling wave case (figure 13), the plots at the four spanwise positions
look more similar to one another. Each wake pattern looks relatively similar to the
two-dimensional fixed cylinder. These four plots show phases at 1/4 cycle intervals.
Consequently, plots (a) and (c) are antisymmetric, and plots (b) and (d) are anti-
symmetric with respect to one another. Phases in time are indistinguishable from
phases in space (i.e. position along the cable), because we have a travelling wave
solution of φ(z + ct) = const. Also, the magnitude of streamwise vorticity is higher
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Figure 10. Top and perspective views of spanwise vorticity for the travelling wave cable response.
The two shades denote equal and opposite magnitude of spanwise velocity, contour levels ωz = ±0.2,
Re = 100.

as a function of downstream distance, than that in the standing wave wake. This is
partly due to the greater coherence of the structure of vorticity in oblique shedding.
The streamwise spacing of vortices is approximately 6 diameters in the standing wave
case, and approximately 5 diameters in the travelling wave case.

An obvious difference between the wake in both the standing and travelling wave
flow-induced vibration cases with the wake behind a fixed cylinder (all at Re = 100) is
that the former wakes are intrinsically three-dimensional, while the wake behind the
fixed cylinder is two-dimensional. Consequently, the streamwise and normal vorticities
(ωx and ωy) will be non-zero in the three-dimensional case. Figure 14 shows a top view



A direct numerical simulation study of flow past a freely vibrating cable 113

–6

–4

–2

0

2

4

6

0 2 4 6 8 10 12

Anti-node Anti-node

z

y

(a)

0 2 4 6 8 10 12
z

(b)

Figure 11. Spanwise velocity in the (y, z)-plane behind (a) a standing wave and (b) a travelling
wave, at x/d = 10, Re = 100.

of the three vorticity components for the standing wave (a) and travelling wave (b)
wakes. The two shades denote equal and opposite levels of the vorticity, and the same
contour levels (ω = ±0.2) are used in all the plots to allow easy comparison. Looking
first at the standing wave wake, we see that the cable vibration introduces significant
streamwise vorticity; in fact further downstream, the streamwise vorticity is the largest
of the three vorticity components. The magnitude of this streamwise vorticity should
be related to the ratio of the cable vibration amplitude to the wavelength since this is
a direct means of introducing streamwise rotation into the flow. The streamwise and
normal vorticities are zero in the planes of the anti-nodes. Again, we see the staggered
pattern of spanwise vorticity shown previously in figure 9. Now looking at the top view
of the three vorticity components of the travelling wave wake (figure 14b), we see a
similar picture for the three components. Note in this travelling wave case that further
downstream, the largest vorticity component is spanwise vorticity. Given a vorticity
magnitude of ω, the streamwise and spanwise vorticity components approximately
will be ωx = ω sin θ and ωz = ω cos θ respectively, where θ is the shedding angle. The
normal vorticity ωy in this case decreases rapidly with downstream distance.

We make one final observation before moving onto the unconstrained cable flow-
induced vibration simulations. Although the standing wave cable response is sustained
for several shedding periods, we observe that eventually (after more than 20 shedding
periods) this standing wave response gradually becomes a travelling wave response,
for the L/d = 12.6 vibration wavelength case. This change in response is shown
in figure 15, where we see primarily a standing wave response at tU/d = 500, and
primarily a travelling wave response at tU/d = 570 (over an interval of approximately
11 shedding cycles). This is consistent with observations in field experiments with very
long cables by Vandiver (1991), and Alexander (1981) where no reflections are possible
from the cable’s ends due to amplitude attenuation along the cable. Therefore, the
infinite-cable behaviour prevails in this case, as it does in our simulations.
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Figure 12. Slices in the (x, y)-plane showing spanwise vorticity for the standing wave case:
at (a) the cable anti-node (max), (b) node, (c) anti-node (min) and (d) node. Re = 100.

4.2. Unconstrained cable

In all the flow-induced vibration simulations in the previous section, the cable was
constrained to only allow motion in the crossflow direction. This constrained case
was simpler and it involved a shorter transient for the cable and flow response to
reach a time periodic state. In this section, we consider the flow-induced vibration
of a completely free cable, allowing motion in both the streamwise and crossflow
directions. We concentrate on the vibration wavelength L/d = 12.6, but also consider
longer wavelengths up to L/d = 201.1. The assumption of an infinitely long spanwise-
periodic cable introduces a small computational problem. Because the cable has no
end conditions (e.g. pinned ends) there is no means of maintaining a mean streamwise
cable position to balance the mean drag force. A convenient solution is to introduce
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Figure 13. Slices in the (x, y)-plane showing spanwise vorticity for the travelling wave case: at (a)
the cable anti-node (max), (b) node, (c) anti-node (min) and (d) node. Re = 100.

a ficticious light elastic support that runs the length of the cable. Using a spring
with stiffness per unit length k, and given the cable mass per unit length ρ, we get a
mode-zero natural frequency ωn = (k/ρ)1/2. So in each direction of motion, we model
the cable equation with

ζtt + ω2
nζ = c2ζzz + (1/ρ)Fd(z, t). (4.1)

We choose a spring constant k, such that the natural frequency of the first mode
of vibration increases by no more than 0.5%. If we assume a homogeneous solution
ζ = ei(ωmt+2πmz/L), by substituting this into the unforced version of (4.1), for mode
m = 1 we get, −ω2

1 + ω2
n = −c2(2π/L)2, i.e. choose ωn ≈ 0.1× 2πc/L to limit the

increase in ω1 to less than 0.5%. The effect of the elastic support is less with higher
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Figure 14(a). For caption see facing page.
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Figure 14. Top view of three vorticity components for wake behind a constrained standing wave
(a) and travelling wave (b), Re = 100. Contour levels ω = ±0.2.
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Figure 15. Contours of cable crossflow displacement showing the constrained standing wave cable
response eventually becoming a travelling wave response after many shedding periods, Re = 100.
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Figure 16. Contour plots of cable crossflow displacement, lift coefficient, streamwise displacement
and drag coefficient, showing the immediate breakdown of a standing wave response to a travelling
wave response when the streamwise motion constraint is removed, Re = 100, L/d = 12.6.

modes – for example the frequency of mode m = 2 is increased by only 0.1%. The
spring constant is given by (k/ρ)1/2 = 0.1 × 2πc/L = 0.105, so k = 0.02. Therefore,
the mean streamwise position of the cable is approximately x̄ = F̄d/k = 0.9/0.02 = 45
diameters downstream.

Two L/d = 12.6 unconstrained cable simulations are run, starting with the standing
wave and travelling wave fields obtained in the previous section. The simulations are
run until a time-periodic state is reached. We observe that the standing wave cable
response quickly becomes a travelling wave cable response, as is seen in figure 16. The
streamwise motion constraint is removed at tU/d = 500. At tU/d = 650, the position
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L/d y/d Cl C̄d C ′d St

12.6 0.668 0.355 2.008 0.159 0.159
25.1 0.733 0.599 2.039 0.303 0.156
50.3 0.794 0.938 2.230 0.572 0.152

100.5 0.793 0.968 2.238 0.598 0.150
201.1 0.793 0.957 2.245 0.591 0.151

Table 5. Longer-wavelength unconstrained flow-induced vibration case results, Re = 100.

of the cable is approximately 40 diameters downstream from where it started (third
plot). At this time the travelling wave cable response is clearly seen. The direction of
motion of this travelling wave (whether +z or −z) is arbitrary; in this case we see
a travelling wave in the −z-direction. Since the responses of the cable with both the
standing wave and travelling wave initial conditions become the same, we only need
to report on one, which we refer to as the unconstrained travelling wave response, or
just the flow-induced vibration response.

Figure 17(a) shows the cable’s crossflow displacement y/d, lift coefficient Cl , stream-
wise displacement x/d, and drag coefficient Cd, versus time tU/d, and position along
cable z/d, for this unconstrained travelling wave. Comparing these results with the
constrained travelling wave plots in figure 7, we see that the cable’s streamwise mo-
tion x/d oscillates with twice the frequency and half the spanwise wavelength of
the crossflow motion y/d. Furthermore, the amplitude of the cable vibration in the
streamwise direction is approximately x/d = 0.09, less than 15% of the crossflow
vibration amplitude of y/d = 0.67. To check for any differences in flow structure with
the constrained case, we also plot slices of spanwise vorticity. Figure 17(b) shows the
slices at four equispaced positions along the cable. The pattern of spanwise vorticity
is almost the same as in figure 13, except for a slight difference in the coalescence of
same-sign spanwise vorticity at approximately 20 diameters downstream.

Finally, we study how the unconstrained cable vibration response varies with
increasing vibration wavelengths from L/d = 12.6 to 201.1. Table 5 summarizes
the cable crossflow amplitude and force results. The amplitude of cable vibration
increases almost 20% from y/d = 0.668 to y/d = 0.794 as the vibration wavelength
increases. Along with this we see a more than a twofold increase in the amplitude of
the lift coefficient, but only a 10% increase in the mean drag coefficient. The vibration
frequency drops by approximately 5% in the longer-wavelength cases.

4.3. Sensitivity to cable tension

In all the simulations presented, the tension of the cable (i.e. phase speed) was chosen
so that the natural frequency of the cable vibration matched the corresponding
shedding frequency of flow past a stationary cylinder at Re = 100. To investigate the
sensitivity of cable motion and forces to cable tension, additional simulations were
run for the unconstrained travelling wave at 10% lower phase speed (20% lower cable
tension), and 10% higher phase speed (20% higher cable tension). As a base case we
considered the simulation at Re = 100, L/d = 12.6, and c = 2.1. The results are listed
in table 6. The higher phase speed produces larger vibration amplitude, lift coefficient
and mean and fluctuating drag coefficient. A similar result was also observed in our
two-dimensional simulations.
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Figure 17(a). For caption see facing page.

4.4. Response to random initial conditions

We are interested in further investigating the preferred time-asymptotic vibration
response of a cable undergoing flow-induced vibration. In the previous section, we
found that for a constrained cable, both standing wave and travelling wave vibration
modes are relatively stable over several shedding periods. In those cases, the initial
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Figure 17. (a) Cable crossflow displacement (y/d), lift coefficient (Cl) and drag coefficient (Cd) versus
non-dimensional time and spanwise distance (z/d) along the cable for unconstrained travelling wave
response L/d = 12.6. (b): Slices in the (x, y)-plane showing spanwise vorticity for the unconstrained
travelling wave case. From top to bottom the plots show the slices at the cable anti-node (max),
node, anti-node (min) and node, respectively. Re = 100.
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c y/d Cl C̄d C ′d St

1.9 0.567 0.158 1.745 0.051 0.144
2.1 0.668 0.355 2.007 0.159 0.159
2.3 0.737 0.750 2.257 0.419 0.174

Table 6. Sensitivity of cable motion and forces on cable tension, L/d = 12.6, Re = 100. Base case
is unconstrained travelling wave, c = 2.1.
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Figure 18. Quasi-random initial cable displacement; initial cable velocity is zero.

cable position and velocity were prescribed as a standing wave and travelling wave.
The resulting cable motion for these two cases was primarily single-moded responses
of a standing wave and travelling wave respectively (although, recall, that after a
very long time the standing wave response changed to a travelling wave response).
Now we raise the question: Is a multi-moded vibration response possible, and under
what conditions do we get such a response? To try to answer this question, we
performed simulations with the cable having a quasi-random initial position and zero
initial velocity. In this way, we let the cable motion evolve to its preferred time-
asymptotic response. For computational simplicity we only consider a constrained
cable vibrating in the crossflow direction. Three cases corresponding to three different
cable tensions are considered. The three tensions are chosen to attempt to select, i.e.
amplify, vibrations with spanwise wavelengths of L/d = 6.3, 12.6, and 25.1. The initial
cable crossflow displacement is shown in figure 18. This initial displacement shows
a waveform composed of several wavelengths, and the maximum amplitude of the
waveform is relatively small.

The three simulations have identical cable and flow initial conditions – the only
difference is the cable tension. The simulations for the three tension cases are run
for more than 20 shedding cycles. The simulation results for the first 120 time
units (approximately 20 shedding cycles) are shown in figure 19. Again, we plot the
cable crossflow displacement y/d, versus time tU/d, and position along cable z/d.
The lowest tension case, plot (a), shows a standing wave response with a spanwise
wavelength of L/d = 6.3 emerging after about 15 shedding cycles (tU/d = 260).
The higher tension case, plot (b), shows a standing wave response emerging after 5
shedding cycles (tU/d = 210), but this soon turns into a travelling wave response
(tU/d = 240) which is then maintained, this time with a spanwise wavelength of
L/d = 12.6. In the highest tension case, plot (c), the standing wave response emerges
very quickly and is sustained for about 10 shedding cycles until tU/d = 250, but
then it turns into a travelling wave response in this case with a spanwise wavelength
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Figure 19. Cable crossflow displacement response to random initial conditions. Re = 100.

of L/d = 25.1. In every case, the maximum amplitude of crossflow displacement is
approximately y/d = 0.7.

In the lowest tension case, why do we observe an eventual standing wave response,
while in the two higher tension cases we observe eventual travelling wave responses?
Recall that, as seen in §4.1, the L/d = 6.3 vibration wavelength travelling wave
response is unstable due to the high angle of oblique shedding, and breaks down to
a standing wave response. Consequently, it is not surprising that in this wavelength
case we observe the evolution of a standing wave response which persists indefinitely.

4.5. Fluid/cable energy transfer

The instantaneous power developed by the lift force Fl acting on the cable which
moves at a velocity ∂y/∂t is given by Wl = Fl∂y/∂t. Similarly for the drag force,
Wd = Fd∂x/∂t. We compute the power produced by the lift force and drag force for
the constrained standing and travelling wave as well as the unconstrained travelling
wave. The results are plotted in figures 20 and 21. Of course, for the constrained cable
cases, we only compute the power due to the lift force. Positive power means that
energy is being transferred from the fluid to the cable. Looking at the standing wave
power plot (figure 20a), we note several features. First, when the cable velocity is zero,
no power is developed – therefore at the cable nodes, and when the standing wave
is at maximum amplitude, the instantaneous power is zero. As the cable moves from
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the instant of maximum amplitude, the instantaneous power is negative, indicating
that the cable is transferring energy to the fluid. Then the fluid transfers energy back
to the cable as it returns to the position of maximum amplitude. For a time-periodic
response, the net power exchange over one cycle is zero; otherwise the cable would
be in a different state after one period.

As expected, the constrained travelling wave power response in figure 20(b) shows
the instantaneous power following the same travelling wave pattern as the motion
and forces. The magnitude of the power is less than half the peak power measured for
the standing wave case. This is due to both the lower magnitude of the lift forces and
the lower cable velocity (the velocity is proportional to amplitude) in the travelling
wave case.

In the unconstrained travelling wave case we separately compute the power due
to the lift force Wl and the drag force Wd. The peak power due to the drag force is
more than triple the peak power due to the lift force, and the lift power cycle lags the
drag power cycle by approximately 90◦.

Is there any pattern of energy transfer in either space or time? Because the travelling
wave responses are very close to single-frequency sinusoidal in both space and time,

both space and time averages, E(t) = (1/L)
∫ L

0
Wdz and E(z) = (1/T )

∫ T
0
Wdt,

integrated over one wavelength or period, are practically zero. However, in the case
of the standing wave, we get important information from both these quantities.
Figure 22 shows E(z), the time average of the power plot in figure 20(a). Over one
shedding cycle, energy is transferred from the fluid to the cable near the nodes of
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the standing wave (recall that at the node we get zero power), and from the cable to
the fluid at the anti-nodes of the standing wave. This is a somewhat expected result,
because the small motion of the cable near the nodes is being forced by the fluid,
while the large motion of the cable at the anti-nodes is being damped by the fluid.

The instantaneous cable energy is given by e(t) = (1/L)
∫ L

0
(y2
t + c2y2

z + ω2
ny

2)dz.
This is computed for the constrained standing wave and travelling wave cases. Again,
when the cable motion is purely harmonic, this energy will be constant in time.
Consequently, for the travelling wave cases, we get e(t) = const. On the other hand,
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for the standing wave we get an oscillating cable energy time history. These are
shown for the four vibration wavelengths in figure 23. As the vibration wavelength
increases, both the mean cable energy and amplitude of cable energy decrease, with
the exception of L/d = 6.3. The difference between maximum and minimum cable
energy decreases with increasing vibration wavelength. This energy difference reflects
the amount of energy transferred between the cable and fluid during each vibration
cycle.

This oscillation of standing wave cable energy in time and average power versus
span, compared to being constant and zero respectively in the case of the travelling
wave, is a possible explanation of the observation that the travelling wave is the
preferred flow-induced vibration cable response.

5. Response to sheared inflow
Experimental evidence that sheared inflow can lead to a multi-moded vibration

response of the cable which prevents global synchronization has been reported by
Vandiver (1991). Other effects of linear shear have been investigated in Kim, Vandiver
& Holler (1986), Peltzer (1985) and Venugopal (1996). When the incoming flow is
sheared, different sections of the cable experience a different free-stream velocity,
and consequently vortices are shed at different frequencies. This mismatch in vortex
shedding frequency along the span of the cable disrupts the vortex shedding pattern
and may lead to a multi-moded vibration response. We can simulate a sheared inflow
in the context of the spanwise-periodic model by specifying a sinusoidal inflow,
e.g. u(−∞, y, z) = u0 + ε cos(2πz/L). For our simulation we set the inflow velocity to
u(−∞, y, z) = (3+cos(2πz/L))/4, i.e. the free stream varies between u = 1 and u = 0.5,
and we get a corresponding range of Reynolds numbers from Re = 100 to Re = 50.
To encourage a greater range of vibration response, we simulated a long section of
cable with a periodic length L/d = 100. The simulation was run for several hundred
time units. The results for the crossflow displacement y/d, lift coefficient Cl , power W ,
and drag coefficients Cd, versus time tU/d, and position along cable z/d, are shown
in figure 24. For this simulation, the lift and drag coefficients are normalized with the
minimum free-stream velocity of u = 0.5, so the force coefficients actually represent
the magnitude of the forces.

The cable’s crossflow displacement shows a mixed standing wave/travelling wave
response forming an overall chevron pattern, similar to what Albarede & Monkewitz
(1992) modelled. The maximum amplitude of the response is y/d = 0.4. The cable’s
motion is smaller on average at z/d = 50, where the inflow is at a maximum,
u = 1. The lift coefficient plot shows this chevron pattern even more clearly, but with
the largest amplitudes occurring near the spanwise locations of intermediate inflow
velocity. The drag force at maximum inflow is approximately three times the drag
force at minimum inflow, almost consistent with the square of the twofold increase in
inflow velocity.

Instantaneous power is on average positive at maximum inflow and negative at
minimum inflow. To examine the average power as a function of spanwise position,

we plot E(z) = (1/T )
∫ T

0
Wdt in figure 25. The spiky nature of this curve is due to

the many vibration nodes along the cable, where the instantaneous power is zero. We
deduce from this plot that on average, where the inflow velocity is above u = 0.75
(between z/d = 30 and z/d = 70), the fluid is supplying energy to the cable, and
where the inflow velocity is below u = 0.75, the cable is supplying energy to the
fluid. Since the computed cable energy is approximately constant in time, this could
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alternatively be viewed as a transfer of energy along the cable from the location of
maximum inflow towards the location of minimum inflow. This transfer is reflected
in the chevron patterns seen in the displacement response. Because we are measuring
flow-induced vibrations with relatively constant amplitude, the net area under the

curve in figure 25 is negligible, i.e.
∫ L

0

∫ T
0
Wdtdz ≈ 0. The energy transfer shown in

this plot is characteristic of non-lock-in, where power injected at one location and
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Figure 25. Time average of cable power when responding to sheared inflow. Inflow velocity is
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frequency on the cable is dissipated into the fluid at a different position on the cable,
which is exposed to a different inflow velocity, as described by Kim et al. (1986).

Figure 26 shows an iso-surface of spanwise vorticity from this sheared inflow
case. For clarity, we have plotted just one value of negative spanwise vorticity. The
figure clearly shows the higher frequency of shedding at the location of maximum
inflow z/d = 50, and lower frequency of shedding at the location of minimum
inflow z/d = 100. This difference in shedding frequency along the span causes vortex
dislocation (seen in the figure at approximately z/d = 65). Vortex dislocation has been
observed in experiments by Williamson (1992) and Eisenlohr & Eckelmann (1989)
and in numerical simulations with a stationary cylinder at higher Reynolds number
by Henderson & Karniadakis (1995).

6. Transitional flow at Re = 200

All the Re = 100 flow-induced vibration simulations result in time-periodic cable
and flow responses after the transients die out. To investigate the effect of higher
Reynolds number, we conducted simulations examining the case of unconstrained ca-
ble flow-induced vibrations at Re = 200 for the L/d = 12.6 spanwise wavelength case.
This wavelength was chosen for two reasons. First, throughout this study L/d = 12.6
is considered the ‘base’ spanwise wavelength to make comparisons between different
simulations easier. Second, the shorter wavelength offers reasonable resolution (mesh
spacing in the z-direction is ∆z/d = 0.4), and practical computation times.

We start the Re = 200 simulation from the Re = 100 unconstrained cable flow-
induced vibration simulation results. The simulation runs for more than 100 shedding
cycles (> 500 time units) at which point the transients due to the change in Reynolds
number die out, and the cable and wake response reach statistical stationarity. The
cable displacement, force coefficients, and power for the crossflow and streamwise
directions of motion are shown in figure 27. First looking at the crossflow cable
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Figure 26. Isosurface of spanwise vorticity for sheared inflow cable wake, showing sheared inflow
profile varying between u = 0.5 and u = 1. (Only part of the cable is shown.)

displacement, we see a peak-to-peak amplitude of nearly two cable diameters, close
to that observed in experiments shown in figure 1. The range of lift coefficients is
nearly four times that measured in the Re = 100 unconstrained travelling wave case.
The power produced by the lift force is more than double that at Re = 100. The
peak-to-peak amplitude of cable motion in the streamwise case is approximately 0.7
diameters, compared to less than 0.2 diameters at Re = 100. The mean streamwise
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Quantity Re = 100 Re = 200

std y/d 0.47 0.46
max y/d 0.67 1.05
std Cl 0.22 0.76
max Cl 0.36 1.59
x̄/d 45.52 45.13
std x/d 0.06 0.15
C̄d 2.01 1.99
std Cd 0.11 0.65
max Cd 2.16 3.60

Table 7. Summary of motion and force results for flow-induced vibrations versus Reynolds numbers
Re = 100 and Re = 200 for L/d=12.6 wavelength cable (std denotes standard deviation and bar
describes time-averaged quantities).

cable displacement and mean drag coefficient are about the same in both cases;
however, the peak drag force is more than 50% higher at Re = 200. Again, we see
greater power transfer between cable and fluid due to the drag force rather than the
lift force.

Table 7 compares the cable dynamics for the Re = 100 and Re = 200 flow-induced
vibration cases: all the parameters are the same except for the Reynolds number
(i.e. the same cable tension and spanwise wavelength). Since the Re = 200 response
was not time periodic, we also list the standard deviation of the cable motion and
forces to provide a better comparison with the Re = 100 results: std y/d refers to the
standard deviation (about the mean, in the case of x and Cd) of the cable’s crossflow
amplitude, and max y/d refers to the maximum measured crossflow amplitude. It is
best to compare standard deviations, since these will be insensitive to random peaks
in motion and forces. Interestingly, we see that the standard deviation of the crossflow
displacement is approximately the same for the two Reynolds numbers, despite larger
maximum values for Re = 200. The standard deviation of the streamwise motion
is 2.5 times bigger at Re = 200, but the mean drag is approximately the same in
both cases. The standard deviation of the drag coefficient is approximately six times
larger at Re = 200, and the maximum drag coefficient is more than 50% larger at
Re = 200.

The top view and perspective views of equal and opposite levels of spanwise vorticity
(ωz = ±0.2) for the the Re = 200 flow-induced vibration wake are shown in figure 28.
The flow is going from left to right and the cable is located at approximately x/d = 45.
We see that the wake is significantly more disorganized than the corresponding wakes
at Re = 100 – compare with the standing wave and travelling wave wakes at Re = 100
in figures 9 and 10. This disorganization may be also due to a possible detuning of
the wake but simulations at different tensions showed similar patterns suggesting that
the flow at this Reynolds number is indeed in a transitional state (Evangelinos &
Karniadakis 1996). It is more difficult to describe the pattern of spanwise vorticity in
this case – in fact we see features that resemble both the standing wave and travelling
wave wakes at Re = 100. To continue the comparison with the Re = 100 case, we plot
a top view of equal and opposite signs of the three vorticity components in figure 29.
We see that the streamwise and normal vorticity components are significantly larger
that the spanwise vorticity component. In these plots, contour levels of ω = ±1 were
chosen for clarity, whereas the corresponding plots at Re = 100 (figures 14) were
plotted with contour levels of ω = ±0.2.
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Figure 28. Top and perspective views of spanwise vorticity for Re = 200 flow-induced vibration
response. The two shades are equal and opposite magnitude of spanwise velocity, contour levels
ωz = ±0.2, Re = 200.

7. Summary and discussion
This paper presents a series of simulations of flow-induced vibrations of a flexible

cable at Re = 100 and Re = 200. The cable vibration wavelength varied from
L/d = 6.3 to 201.1. Most of the cases presented resulted in a lock-in response,
where the cable is vibrating primarily with a single frequency and wavelength. This
lock-in response can have the form of a standing wave or travelling wave cable
vibration. For the streamwise-constrained cable, both these modes were sustained
over several shedding periods. However, the travelling wave cable response prevailed
for longer times. For the unconstrained cable, the travelling wave was the only time-
periodic response observed. The only case where the cable persisted with a standing
wave response was that of a small vibration wavelength (L/d = 6.3) streamwise-
constrained cable. In general, the travelling wave was the preferred response, clearly
visible at Re = 100, and still apparent at Re = 200. With the absence of any cable end
supports, i.e. the assumption of spanwise periodicity, the preference of the travelling
wave response can be possibly explained by considering the power cycle throughout
one shedding period.
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The maximum amplitude of the cable vibration at Re = 200 was approximately one
cable diameter, in agreement with the experimental data of figure 1. At Re = 100 the
maximum amplitude of the crossflow vibration is approximately 0.7 diameters, slightly
above the amplitude of two-dimensional free vibrations at the same Reynolds number.
The three-dimensional simulations showed a greater Reynolds number dependence
than the two-dimensional simulations.

There was a sharp contrast between the wakes generated by the standing wave
and travelling wave cable responses. In the standing wave case, the two sheets of
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spanwise vorticity formed an interwoven pattern, while in the travelling wave case
oblique vortex shedding was observed. Furthermore, the maximum lift force for the
standing wave was significantly larger than that for the travelling wave.

Both standing wave and travelling wave cable vibration responses are realizable
in field and laboratory experiments. Travelling wave responses were observed by
Vandiver (1991) and Alexander (1981) for long cables, and Van Atta, Gharib &
Hammache (1988) and Van Atta, Gharib (1987) for shorter cables with soft end
supports. For cables with non-negligible structural damping, Vandiver (1991) suggests
a criterion according to which a travelling wave dominates when the product of
the mode number and the modal damping ratio exceeds 2. The effect of the end
support has also been documented in the work of Van Atta et al. (1988) for a
vibrating string using smoke wire visualization. The flow structure shown in the
photographs obtained was quite complicated, with the larger structures formed behind
the nodes similarly to what has been observed in our simulations. In the photograph
in figure 3 of Van Atta et al. (1988) owing to the soft support on the right end
(M. Gharib, private communication) travelling waves were produced which caused
oblique shedding similar to what has been observed in the current simulations.

In this work, we have considered primarily lock-in states; no attempt was made
to determine the boundaries of the lock-in regions for freely moving cables. It was
demonstrated in the work of Nuzzi, Magress & Rockwell (1992) that even a small
variation in the diameter of an oscillating cylinder can change the lock-in region
creating subharmonic responses at the lower end of the lock-in boundary. The
differences between the lock-in regions of standing versus travelling wave responses,
i.e. which one is broader, is also not known. These issues as well as multi-moded
responses and higher Reynolds number effects for cables and beams are currently
under investigation.
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